Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Int J Biol Macromol ; 242(Pt 2): 124772, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-2315945

ABSTRACT

Evolution of new variants of SARS-CoV-2 warrant the need for the continued efforts in identifying target-oriented new drugs. Dual targeting agents against MPro and PLPro not only overcome the incomplete efficacy but also the drug resistance, which is common problem. Since both these are cysteine proteases, we designed 2-chloroquinoline based molecules with additional imine moiety in the middle as possible nucleophilic warheads. In the first round of design and synthesis, three molecules (C3, C4 and C5) inhibited (Ki < 2 µM) only MPro by binding covalently to C145 and one molecule (C10) inhibited both the proteases non-covalently (Ki < 2 µM) with negligible cytotoxicity. Further conversion of the imine in C10 to azetidinone (C11) improved the potency against both the enzymes in the nanomolar range (820 nM against MPro and 350 nM against PLPro) with no cytotoxicity. Conversion of imine to thiazolidinone (C12), reduced the inhibition by 3-5 folds against both the enzymes. Biochemical and computational studies suggest that C10-C12 bind in the substrate binding pocket of MPro and in the BL2 loop of the PLPro. Since these dual inhibitors have least cytotoxicity, they could be further explored as therapeutics against the SARS-CoV-2 and other analogous viruses.


Subject(s)
COVID-19 , Cysteine Proteases , Humans , SARS-CoV-2 , Imines , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology
2.
Chem Biol Drug Des ; 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2278247

ABSTRACT

The development of inhibitors that target the papain-like protease (PLpro) has the potential to counteract the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent causing coronavirus disease 2019 (COVID-19). Based on a consideration of its several downstream effects, interfering with PLpro would both revert immune suppression exerted by the virus and inhibit viral replication. By following a repurposing strategy, the current study evaluates the potential of antimalarial drugs as PLpro inhibitors, and thereby the possibility of their use for treatment of SARS-CoV-2 infection. Computational tools were employed for structural analysis, molecular docking and molecular dynamics simulations to screen antimalarial drugs against PLpro, and in silico data were validated by in vitro experiments. Virtual screening highlighted amodiaquine and methylene blue as the best candidates, and these findings were complemented by the in vitro results that indicated amodiaquine as a µM PLpro deubiquitinase inhibitor. The results of this study demonstrate that the computational workflow adopted here can correctly identify active compounds. Thus, the highlighted antimalarial drugs represent a starting point for the development of new PLpro inhibitors through structural optimization.

3.
Biomed Pharmacother ; 159: 114247, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2230211

ABSTRACT

A new coronavirus, known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is a highly contagious virus and has caused a massive worldwide health crisis. While large-scale vaccination efforts are underway, the management of population health, economic impact and asof-yet unknown long-term effects on physical and mental health will be a key challenge for the next decade. The papain-like protease (PLpro) of SARS-CoV-2 is a promising target for antiviral drugs. This report used pharmacophore-based drug design technology to identify potential compounds as PLpro inhibitors against SARS-CoV-2. The optimal pharmacophore model was fully validated using different strategies and then was employed to virtually screen out 10 compounds with inhibitory. Molecular docking and non-bonding interactions between the targeted protein PLpro and compounds showed that UKR1129266 was the best compound. These results provided a theoretical foundation for future studies of PLpro inhibitors against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Molecular Docking Simulation , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Viral Nonstructural Proteins , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Design , Endopeptidases
4.
Bioorg Chem ; 135: 106390, 2023 06.
Article in English | MEDLINE | ID: covidwho-2209870

ABSTRACT

In this paper, an environmentally benign, convenient, and efficient one-pot three-component reaction has been developed for the regioselective synthesis of novel 5-aroyl(or heteroaroyl)-6-(alkylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-diones (4a‒n) through the sequential condensation of aryl(or heteroaryl)glyoxal monohydrates (1a‒g), 1,3-dimethylbarbituric acid (2), and alkyl(viz. cyclohexyl or tert-butyl)isocyanides (3a or 3b) catalyzed by ultra-low loading ZrOCl2•8H2O (just 2 mol%) in water at 50 ˚C. After synthesis and characterization of the mentioned furo[2,3-d]pyrimidines (4a‒n), their multi-targeting inhibitory properties were investigated against the active site and putative allosteric hotspots of both SARS-CoV-2 main protease (MPro) and papain-like protease (PLPro) based on molecular docking studies and compare the attained results with various medicinal compounds which approximately in three past years were used, introduced, and or repurposed to fight against COVID-19. Furthermore, drug-likeness properties of the mentioned small heterocyclic frameworks (4a‒n) have been explored using in silico ADMET analyses. Interestingly, the molecular docking studies and ADMET-related data revealed that the novel series of furo[2,3-d]pyrimidines (4a‒n), especially 5-(3,4-methylendioxybenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-dione (4g) as hit one is potential COVID-19 drug candidate, can subject to further in vitro and in vivo studies. It is worthwhile to note that the protein-ligand-type molecular docking studies on the human body temperature-dependent MPro protein that surprisingly contains zincII (ZnII) ion between His41/Cys145 catalytic dyad in the active site, which undoubtedly can make new plans for designing novel SARS-CoV-2 MPro inhibitors, is performed for the first time in this paper, to the best of our knowledge.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Catalysis , Catalytic Domain , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , Pyrimidinones/chemistry , Pyrimidinones/pharmacology
5.
SLAS Discov ; 28(3): 95-101, 2023 04.
Article in English | MEDLINE | ID: covidwho-2183309

ABSTRACT

The SARS coronavirus 2 (SARS-CoV-2) pandemic remains a major problem in many parts of the world and infection rates remain at extremely high levels. This high prevalence drives the continued emergence of new variants, and possibly ones that are more vaccine-resistant and that can drive infections even in highly vaccinated populations. The high rate of variant evolution makes clear the need for new therapeutics that can be clinically applied to minimize or eliminate the effects of COVID-19. With a hurdle of 10 years, on average, for first in class small molecule therapeutics to achieve FDA approval, the fastest way to identify therapeutics is by drug repurposing. To this end, we developed a high throughput cell-based screen that incorporates the essential viral 3C-like protease and its peptide cleavage site into a luciferase complementation assay to evaluate the efficacy of known drugs encompassing approximately 15,000 clinical-stage or FDA-approved small molecules. Confirmed inhibitors were also tested to determine their cytotoxic properties. Medicinal chemistry efforts to optimize the hits identified Tranilast as a potential lead. Here, we report the rapid screening and identification of potentially relevant drugs that exhibit selective inhibition of the SARS-CoV-2 viral 3C-like protease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , High-Throughput Screening Assays , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/chemistry
6.
Phytochemistry ; 201: 113284, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1886026

ABSTRACT

In this work, a bioassay-guided fractionation strategy was used to isolate 26 phenolic compounds from the ethyl acetate partition of an ethanol extract of the aerial parts of Glycyrrhiza uralensis Fisch. ex DC. Among them, 8 prenylated phenolic compounds (glycyuralins Q-X) were described for the first time. The two enantiomers of glycyuralin Q were purified and their absolute configurations were established by ECD spectral calculations. (1″R, 2″S)-glycyuralin Q and (1″S, 2″R)-glycyuralin Q showed significant inhibitory activities against SARS-CoV-2 virus proteases 3CLpro with IC50 values of 1.5 ± 1.0 and 4.0 ± 0.3 µM, and PLpro with IC50 values of 2.4 ± 0.2 and 1.9 ± 0.1 µM, respectively. Four compounds showed potent cytotoxic activities against A549, Huh-7, and HepG2 human cancer cells with IC50 values ranging from 0.5 to 2.5 µM.


Subject(s)
COVID-19 , Glycyrrhiza uralensis , Glycyrrhiza , Humans , Phenols/pharmacology , Plant Components, Aerial , SARS-CoV-2
7.
Comput Biol Med ; 146: 105668, 2022 07.
Article in English | MEDLINE | ID: covidwho-1867012

ABSTRACT

Benzalacetophenones, precursors of flavonoids are aromatic ketones and enones and possess the immunostimulant as well as antiviral activities. Thus, benzalacetophenones were screened against the COVID-19 that could be lethal in patients with compromised immunity. We considered ChEBI recorded benzalacetophenone derivative(s) and evaluated their activity against 3C-like protease (3CLpro), papain-like protease (PLpro), and spike protein of SARS-Cov-2 to elucidate their possible role as antiviral agents. The probable targets for each compound were retrieved from DIGEP-Pred at 0.5 pharmacological activity and all the modulated proteins were enriched to identify the probably regulated pathways, biological processes, cellular components, and molecular functions. In addition, molecular docking was performed using AutoDock 4 and the best-identified hits were subjected to all-atom molecular dynamics simulation and binding energy calculations using molecular mechanics Poisson-Boltzmann surface area (MMPBSA). The compound 4-hydroxycordoin showed the highest druglikeness score and regulated nine proteins of which five were down-regulated and four were upregulated. Similarly, enrichment analysis identified the modulation of multiple pathways concerned with the immune system as well as pathways related to infectious and non-infectious diseases. Likewise, 3'-(3-methyl-2-butenyl)-4'-O-ß-d-glucopyranosyl-4,2'-dihydroxychalcone with 3CLpro, 4-hydroxycordoin with PLpro and mallotophilippen D with spike protein receptor-binding domain showed highest binding affinity, revealed stable interactions during the simulation, and scored binding free energy of -26.09 kcal/mol, -16.28 kcal/mol, and -39.2 kcal/mol, respectively. Predicted anti-SARS-CoV-2 activities of the benzalacetophenones reflected the requirement of wet lab studies to develop novel antiviral candidates.


Subject(s)
COVID-19 Drug Treatment , Chalcone , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
8.
Cell Chem Biol ; 29(5): 774-784.e8, 2022 05 19.
Article in English | MEDLINE | ID: covidwho-1616412

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has been socially and economically devastating. Despite an unprecedented research effort and available vaccines, effective therapeutics are still missing to limit severe disease and mortality. Using high-throughput screening, we identify acriflavine (ACF) as a potent papain-like protease (PLpro) inhibitor. NMR titrations and a co-crystal structure confirm that acriflavine blocks the PLpro catalytic pocket in an unexpected binding mode. We show that the drug inhibits viral replication at nanomolar concentration in cellular models, in vivo in mice and ex vivo in human airway epithelia, with broad range activity against SARS-CoV-2 and other betacoronaviruses. Considering that acriflavine is an inexpensive drug approved in some countries, it may be immediately tested in clinical trials and play an important role during the current pandemic and future outbreaks.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Acriflavine , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Mice , Molecular Docking Simulation , Pandemics
9.
Cell Rep ; 31(11): 107772, 2020 06 16.
Article in English | MEDLINE | ID: covidwho-1385222

ABSTRACT

ISG15 is a ubiquitin-like modifier that also functions extracellularly, signaling through the LFA-1 integrin to promote interferon (IFN)-γ release from natural killer (NK) and T cells. The signals that lead to the production of extracellular ISG15 and the relationship between its two core functions remain unclear. We show that both epithelial cells and lymphocytes can secrete ISG15, which then signals in either an autocrine or paracrine manner to LFA-1-expressing cells. Microbial pathogens and Toll-like receptor (TLR) agonists result in both IFN-ß-dependent and -independent secretion of ISG15, and residues required for ISG15 secretion are mapped. Intracellular ISGylation inhibits secretion, and viral effector proteins, influenza B NS1, and viral de-ISGylases, including SARS-CoV-2 PLpro, have opposing effects on secretion of ISG15. These results establish extracellular ISG15 as a cytokine-like protein that bridges early innate and IFN-γ-dependent immune responses, and indicate that pathogens have evolved to differentially inhibit the intracellular and extracellular functions of ISG15.


Subject(s)
Cytokines/metabolism , Signal Transduction , Ubiquitins/metabolism , Animals , HEK293 Cells , Humans , Influenza, Human/immunology , Influenza, Human/metabolism , Interferon-gamma/immunology , Interferon-gamma/metabolism , Jurkat Cells , Mice , Mice, Inbred C57BL , Mycobacterium Infections/immunology , Mycobacterium Infections/metabolism , Pathogen-Associated Molecular Pattern Molecules , Typhoid Fever/immunology , Typhoid Fever/metabolism , Viral Nonstructural Proteins/metabolism
10.
Comb Chem High Throughput Screen ; 24(8): 1271-1280, 2021.
Article in English | MEDLINE | ID: covidwho-1302072

ABSTRACT

BACKGROUND: Novel coronavirus is a type of enveloped viruses with a single-stranded RNA enclosing helical nucleocapsid. The envelope consists of spikes on the surface which are made up of proteins through which virus enters into human cells. Until now, there is no specific drug or vaccine available to treat COVID-19 infection. In this scenario, reposting of drug or active molecules may provide rapid solution to fight against this deadly disease. OBJECTIVE: We selected 30 phytoconstituents from the different plants which are reported for antiviral activities against coronavirus (CoVs) and performed in silico screening to find out phytoconstituents which have potency to inhibit specific target of the novel coronavirus. METHODS: We performed molecular docking studies on three different proteins of novel coronavirus, namely COVID-19 main protease (3CL pro), papain-like protease (PL pro) and spike protein (S) attached to ACE2 binding domain. The screening of the phytoconstituents on the basis of binding affinity compared to standard drugs. The validations of screened compounds were done using ADMET and bioactivity prediction. RESULTS: We screened five compounds biscoclaurine, norreticuline, amentoflavone, licoricidin and myricetin, using in silico approach. All compounds were found safe in In silico toxicity studies. Bioactivity prediction reveals that these compounds may act through protease or enzyme inhibition. Results of compound biscoclaurine norreticuline were more interesting as this biscoclaurine had higher binding affinity for the target 3CLpro and PLpro targets and norreticuline had a higher binding affinity for the target PLpro and Spike protein. CONCLUSION: Our study concludes that these compounds could be further explored rapidly as it may have potential to fight against COVID-19.


Subject(s)
Biological Products , COVID-19 , Antiviral Agents/pharmacology , Biological Products/pharmacology , Humans , Molecular Docking Simulation , SARS-CoV-2
11.
Eur J Pharmacol ; 901: 174082, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1252814

ABSTRACT

The pandemic, COVID-19, has spread worldwide and affected millions of people. There is an urgent need, therefore, to find a proper treatment for the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the causative agent. This paper focuses on identifying inhibitors that target SARS-CoV-2 proteases, PLPRO and 3CLPRO, which control the duplication and manages the life cycle of SARS-CoV-2. We have carried out detailed in silico Virtual high-throughput screening using Food and Drug Administration (FDA) approved drugs from the Zinc database, COVID-19 clinical trial compounds from Pubchem database, Natural compounds from Natural Product Activity and Species Source (NPASS) database and Maybridge database against PLPRO and 3CLPRO proteases. After thoroughly analyzing the screening results, we found five compounds, Bemcentinib, Pacritinib, Ergotamine, MFCD00832476, and MFCD02180753 inhibit PLPRO and six compounds, Bemcentinib, Clofazimine, Abivertinib, Dasabuvir, MFCD00832476, Leuconicine F inhibit the 3CLPRO. These compounds are stable within the protease proteins' active sites at 20ns MD simulation. The stability is revealed by hydrogen bond formations, hydrophobic interactions, and salt bridge interactions. Our study results also reveal that the selected five compounds against PLPRO and the six compounds against 3CLPRO bind to their active sites with good binding free energy. These compounds that inhibit the activity of PLPRO and 3CLPRO may, therefore, be used for treating COVID-19 infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , High-Throughput Screening Assays/methods , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Catalytic Domain/drug effects , Databases, Factual , Drug Repositioning , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Salts/chemistry , Viral Nonstructural Proteins
12.
Biomed Pharmacother ; 137: 111313, 2021 May.
Article in English | MEDLINE | ID: covidwho-1062248

ABSTRACT

The SARS-CoV-2 outbreak and pandemic that began near the end of 2019 has posed a challenge to global health. At present, many candidate small-molecule therapeutics have been developed that can inhibit both the infection and replication of SARS-CoV-2 and even potentially relieve cytokine storms and other related complications. Meanwhile, host-targeted drugs that inhibit cellular transmembrane serine protease (TMPRSS2) can prevent SARS-CoV-2 from entering cells, and its combination with chloroquine and dihydroorotate dehydrogenase (DHODH) inhibitors can limit the spread of SARS-CoV-2 and reduce the morbidity and mortality of patients with COVID-19. The present article provides an overview of these small-molecule therapeutics based on insights from medicinal chemistry research and focuses on RNA-dependent RNA polymerase (RdRp) inhibitors, such as the nucleoside analogues remdesivir, favipiravir and ribavirin. This review also covers inhibitors of 3C-like protease (3CLpro), papain-like protease (PLpro) and other potentially innovative active ingredient molecules, describing their potential targets, activities, clinical status and side effects.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Molecular Targeted Therapy/methods , SARS-CoV-2 , Antiviral Agents/classification , Antiviral Agents/pharmacology , COVID-19/metabolism , Enzyme Inhibitors/pharmacology , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Therapies, Investigational
13.
Eur J Pharmacol ; 891: 173759, 2021 Jan 15.
Article in English | MEDLINE | ID: covidwho-1049787

ABSTRACT

The novel coronavirus outbreak (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents the actual greatest global public health crisis. The lack of efficacious drugs and vaccines against this viral infection created a challenge for scientific researchers in order to find effective solutions. One of the promising therapeutic approaches is the search for bioactive molecules with few side effects that display antiviral properties in natural sources like medicinal plants and vegetables. Several computational and experimental studies indicated that flavonoids especially flavonols and their derivatives constitute effective viral enzyme inhibitors and possess interesting antiviral activities. In this context, the present study reviews the efficacy of many dietary flavonols as potential antiviral drugs targeting the SARS-CoV-2 enzymes and proteins including Chymotrypsin-Like Protease (3CLpro), Papain Like protease (PLpro), Spike protein (S protein) and RNA-dependent RNA polymerase (RdRp), and also their ability to interact with the angiotensin-converting enzyme II (ACE2) receptor. The relationship between flavonol structures and their SARS-CoV-2 antiviral effects were discussed. On the other hand, the immunomodulatory, the anti-inflammatory and the antiviral effects of secondary metabolites from this class of flavonoids were reported. Also, their bioavailability limitations and toxicity were predicted.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Flavonols/pharmacology , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , COVID-19/metabolism , Coronavirus 3C Proteases/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Drug Development , Humans , Phytochemicals/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism
14.
Comb Chem High Throughput Screen ; 24(8): 1271-1280, 2021.
Article in English | MEDLINE | ID: covidwho-745094

ABSTRACT

BACKGROUND: Novel coronavirus is a type of enveloped viruses with a single-stranded RNA enclosing helical nucleocapsid. The envelope consists of spikes on the surface which are made up of proteins through which virus enters into human cells. Until now, there is no specific drug or vaccine available to treat COVID-19 infection. In this scenario, reposting of drug or active molecules may provide rapid solution to fight against this deadly disease. OBJECTIVE: We selected 30 phytoconstituents from the different plants which are reported for antiviral activities against coronavirus (CoVs) and performed in silico screening to find out phytoconstituents which have potency to inhibit specific target of the novel coronavirus. METHODS: We performed molecular docking studies on three different proteins of novel coronavirus, namely COVID-19 main protease (3CL pro), papain-like protease (PL pro) and spike protein (S) attached to ACE2 binding domain. The screening of the phytoconstituents on the basis of binding affinity compared to standard drugs. The validations of screened compounds were done using ADMET and bioactivity prediction. RESULTS: We screened five compounds biscoclaurine, norreticuline, amentoflavone, licoricidin and myricetin, using in silico approach. All compounds were found safe in In silico toxicity studies. Bioactivity prediction reveals that these compounds may act through protease or enzyme inhibition. Results of compound biscoclaurine norreticuline were more interesting as this biscoclaurine had higher binding affinity for the target 3CLpro and PLpro targets and norreticuline had a higher binding affinity for the target PLpro and Spike protein. CONCLUSION: Our study concludes that these compounds could be further explored rapidly as it may have potential to fight against COVID-19.


Subject(s)
Biological Products , COVID-19 , Antiviral Agents/pharmacology , Biological Products/pharmacology , Humans , Molecular Docking Simulation , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL